1,221 research outputs found

    Green Function Simulation of Hamiltonian Lattice Models with Stochastic Reconfiguration

    Get PDF
    We apply a recently proposed Green Function Monte Carlo to the study of Hamiltonian lattice gauge theories. This class of algorithms computes quantum vacuum expectation values by averaging over a set of suitable weighted random walkers. By means of a procedure called Stochastic Reconfiguration the long standing problem of keeping fixed the walker population without a priori knowledge on the ground state is completely solved. In the U(1)2U(1)_2 model, which we choose as our theoretical laboratory, we evaluate the mean plaquette and the vacuum energy per plaquette. We find good agreement with previous works using model dependent guiding functions for the random walkers.Comment: 14 pages, 5 PostScript Figures, RevTeX, two references adde

    Historical and interpretative aspects of quantum mechanics: a physicists' naive approach

    Get PDF
    Many theoretical predictions derived from quantum mechanics have been confirmed experimentally during the last 80 years. However, interpretative aspects have long been subject to debate. Among them, the question of the existence of hidden variables is still open. We review these questions, paying special attention to historical aspects, and argue that one may definitively exclude local realism on the basis of present experimental outcomes. Other interpretations of Quantum Mechanics are nevertheless not excluded.Comment: 30 page

    Temperature-extended Jarzynski relation: Application to the numerical calculation of the surface tension

    Full text link
    We consider a generalization of the Jarzynski relation to the case where the system interacts with a bath for which the temperature is not kept constant but can vary during the transformation. We suggest to use this relation as a replacement to the thermodynamic perturbation method or the Bennett method for the estimation of the order-order surface tension by Monte Carlo simulations. To demonstrate the feasibility of the method, we present some numerical data for the 3D Ising model

    Dynamic critical behaviour in Ising spin glasses

    Full text link
    The critical dynamics of Ising spin glasses with Bimodal, Gaussian, and Laplacian interaction distributions are studied numerically in dimensions 3 and 4. The data demonstrate that in both dimensions the critical dynamic exponent zcz_{\rm c}, the non-equilibrium autocorrelation decay exponent λc/zc\lambda_c/z_{\rm c}, and the critical fluctuation-dissipation ratio XX_{\infty} all vary strongly and systematically with the form of the interaction distribution.Comment: 8 pages, 4 figures, version to appear in Phys. Rev.

    Aging phenomena in critical semi-infinite systems

    Full text link
    Nonequilibrium surface autocorrelation and autoresponse functions are studied numerically in semi-infinite critical systems in the dynamical scaling regime. Dynamical critical behaviour is examined for a nonconserved order parameter in semi-infinite two- and three-dimensional Ising models as well as in the Hilhorst-van Leeuwen model. The latter model permits a systematic study of surface aging phenomena, as the surface critical exponents change continuously as function of a model parameter. The scaling behaviour of surface two-time quantities is investigated and scaling functions are confronted with predictions coming from the theory of local scale invariance. Furthermore, surface fluctuation-dissipation ratios are computed and their asymptotic values are shown to depend on the values of surface critical exponents.Comment: 12 pages, figures included, version to appear in Phys. Rev.

    Critical Behavior and Lack of Self Averaging in the Dynamics of the Random Potts Model in Two Dimensions

    Full text link
    We study the dynamics of the q-state random bond Potts ferromagnet on the square lattice at its critical point by Monte Carlo simulations with single spin-flip dynamics. We concentrate on q=3 and q=24 and find, in both cases, conventional, rather than activated, dynamics. We also look at the distribution of relaxation times among different samples, finding different results for the two q values. For q=3 the relative variance of the relaxation time tau at the critical point is finite. However, for q=24 this appears to diverge in the thermodynamic limit and it is ln(tau) which has a finite relative variance. We speculate that this difference occurs because the transition of the corresponding pure system is second order for q=3 but first order for q=24.Comment: 9 pages, 13 figures, final published versio

    Work fluctuations in quantum spin chains

    Full text link
    We study the work fluctuations of two types of finite quantum spin chains under the application of a time-dependent magnetic field in the context of the fluctuation relation and Jarzynski equality. The two types of quantum chains correspond to the integrable Ising quantum chain and the nonintegrable XX quantum chain in a longitudinal magnetic field. For several magnetic field protocols, the quantum Crooks and Jarzynski relations are numerically tested and fulfilled. As a more interesting situation, we consider the forcing regime where a periodic magnetic field is applied. In the Ising case we give an exact solution in terms of double-confluent Heun functions. We show that the fluctuations of the work performed by the external periodic drift are maximum at a frequency proportional to the amplitude of the field. In the nonintegrable case, we show that depending on the field frequency a sharp transition is observed between a Poisson-limit work distribution at high frequencies toward a normal work distribution at low frequencies.Comment: 10 pages, 13 figure

    Scaling and universality in the aging kinetics of the two-dimensional clock model

    Full text link
    We study numerically the aging dynamics of the two-dimensional p-state clock model after a quench from an infinite temperature to the ferromagnetic phase or to the Kosterlitz-Thouless phase. The system exhibits the general scaling behavior characteristic of non-disordered coarsening systems. For quenches to the ferromagnetic phase, the value of the dynamical exponents, suggests that the model belongs to the Ising-type universality class. Specifically, for the integrated response function χ(t,s)saχf(t/s)\chi (t,s)\simeq s^{-a_\chi}f(t/s), we find aχa_\chi consistent with the value aχ=0.28a_\chi =0.28 found in the two-dimensional Ising model.Comment: 16 pages, 14 figures (please contact the authors for figures
    corecore